Error Correction in HDLC without
Retransmission

Abdou Youssef
Department of CS

The George Washington University

Washington, DC 20052, U.S.A.

Abstract In this paper we develop an effective
and efficient technique for HDLC symbol-error
recovery without retransmission. This is very
useful for several applications, such as mon-
itoring and surveillance, especially of image
Our tech-

nique is rather general and works efficiently at

document facsimile transmission.

a 100% error recovery rate under any modu-
lation scheme as long as the symbol-error pat-
terns that may occur are known a priori. This
is the case under the V.27 and V.29 modu-
lation standards, where all the error patterns
have been identified.

Keywords: Error recovery, HDLC, fax trans-

mission.

1 Introduction

It is an unavoidable fact of life that data
transmission is subject to interference and
noise. A variety of approaches to error man-
agement and recovery have been developed
and employed, ranging from retransmis-
sion to sophisticated error-correcting codes
(ECC) [BLAS83]. However, in many appli-
cations retransmission is not possible and
little ECC protection is used. Examples of

Alan Ratner
National Security Agency
9800 Savage Road
Fort Meade, MD 20755, U.S.A.

applications where retransmission is not an
option include law enforcement transmis-
sion monitoring, surveillance activities, and
retrieval from partially defected disks.

A primary application where little ECC
protection is used is fax transmission over
telephone lines. The communication proto-
col is the well-know and widely used HDLC
protocol, which essentially partitions the
data bitstream into 256-byte pieces (called
frames), and adds 2 CRC bytes to each
frame for error detection but not correc-
tion. The frames are separated with a one-
byte flag of value 01111110. In order not to
mistake substrings of value 01111110 within
frames as flags, O-stuffing is applied to the
frames: inserting a 0 after every sequence
of 5 consecutive 1s. Of course, errors can
corrupt legitimate flags and/or create flase
flags, thus making error recovery the more
difficult.

It is, therefore, of interest to be able to
recover from errors in HDLC data com-
munication without relying on retransmis-
sion or any additional ECC capabilities.
This problem is very challenging, and is
made even more difficult in situations where
modulation is used, as in fax over tele-

phone lines, because errors are symbol er-
rors spreading over multiple bytes, rather
than single-bit errors. While a large body of
work about error management exists, such
as ECC [BLAS83], joint source-channel cod-
ing, and error resiliency techniques, no work
has been done on symbol-error recovery in
HDLC without retransmission.

In this paper we develop an effective and
efficient approach to HDLC symbol-error
recovery without retransmission. The ap-
proach is rather general and works effec-
tively under any modulation scheme as long
as the symbol-error patterns that may occur
are known a priori. This is the case under
the V.27 [CCI84] and V.29 [CCI88] modula-
tion standards, where all the error patterns
(about a dozen) that may occur have been
found by one of the authors [RTN96]. The
approach will work under the newer mod-
ulation standards, such as V.17 and V.34,
if the error patterns that may occur under
those schemes are determined. This is the
subject of future work.

The paper is organized as follows. Sec-
tion 2 presents our error recovery approach.
Section 3 gives our performance evalua-
tion results. Finally, conclusions and future
work are presented in Section 4.

2 The Error
Approach

Recovery

Our approach involves three principal com-
ponents:

1. The error-detection module that de-
tects the presence of errors in segments
of the data.

2. The set of all error patterns that might

occur.

3. The error-correction module, which
corrects the errors in each data seg-
ment that was reported to be in error
by the error-detection module.

In this paper, the error detection is done
by the CRC checker of the HDLC protocol,
and the segments are HDLC frames. The
set of error patterns depends on the modu-
lation scheme. For the case where modula-
tion follows the V.27 or V.29 standards, the
set of error patterns have been derived in
[RTNO96], and their probabilities of occur-
rence have been computed. (Those error
patterns, each 32 bits long, would be in-
cluded in the final version of the paper, for
space limitations.) The main contribution
of this paper is the error-correction module.
To carry out error correction, we first de-
velop a classification of the errors based on
their effects and locations, and then write
an algorithm that classifies each error and
conduct class-based error correction. The
next subsection gives the error classifica-
tion, and subsection 2.2 presents the algo-
rithm.

2.1 Error Classification

In the course of developing the error-
correction module, we found it necessary to
develop a new classification of errors, de-
pending on the error locations and their im-
pact. The new classes of errors are:

e In-frame errors. These occur when
an error pattern falls fully within a
frame.

e Flag-saving cross-frame errors.
Those occur when an error pattern

overlaps with an inter-frame flag, or
crosses from one frame to the next,
without flipping any of the flag bits.

e Flag-corrupting cross-frame er-
rors. Those are similar to the previ-
ous class except that they corrupt the
flag. They cause incorrect deframing
because of frame merging.

e Destuffing errors. They occur when
an error pattern flips some of the 0-
stuffing bits or some of the five 1’s pre-
ceding a stuffing bit. In the first case,
a false flag may be created, thus split-
ting a frame into two false frames. In
the second case, the destuffer is fooled
and does not destuff some of the stuffed
0 bits.

2.2 Error Correction

Our error-correction approach handles all
those error classes successfully and effi-
ciently. It is described in this subsection.
For the sake of presentation clarity, we as-
sume at most one error-symbol per frame,
and we occasionally make reference to V.29
error patterns. However, the algorithm can
be easily modified to handle more than
one symbol-error per frame, and applies to
other modulation schemes as long as the er-
ror patterns are known. The presentation
and discussion of the algorithm follows.

In each frame reported to be in error
by the CRC checker, every error pattern
is tried in every bit location in the non-
destuffed frame. The error patterns are
tried in their decreasing probability of oc-
currence. After every trial, the destuffer
and CRC checker are called. If no errors

are reported, the frame is considered cor-
rected; otherwise, another error pattern is
tried from the current bit location. If all bit
locations have been tried with the current
error pattern without success, the next er-
ror pattern (in the ordered list of patterns)
is tried, starting from the first bit in the
frame. This is done until the frame is re-
ported correct or all the patterns and bit
locations have been tried. If the error is an
in-frame error and the end-flag is a legiti-
mate flag, then the error-correction module
as outlined thus far will surely correct the
error. If, on the other hand, the error be-
longs to a different class, other measures are
taken, as described next.

Consider flag-saving cross-frame errors.
A pattern can cross a frame boundary over
a flag without corrupting it if the pattern
has at least 8 consecutive 0s. This is indeed
the case with each of the error patterns in
V.29. Of course, such flag-saving crossing
can happen if the error pattern starts at
a bit location so that an 8-zero run of the
pattern coincides with the flag. For each
error pattern, those bit locations are eas-
ily determined. Luckily for efficiency, they
are very few in number. Note that a pattern
may overlap a flag without crossing it to the
next frame. The flag can still be left intact
if the pattern has only Os in the pattern-flag
overlap region. This is the case with 6 of the
patterns: 3 end with just one 0, and three
end with two Os. In any case, the handling
of cross-frame errors is done as follows.

Let F' be a frame corrupted by an error
pattern that crosses or just overlaps its end-
flag without corrupting it. This frame is
correctly deframed, but the error-correction
module cannot correct the error yet because

the error in it is a partial error pattern that
does not exist explicitly in the collection of
error patterns. Remedying this situation is,
however, rather straightforward. Prefixes
of error patterns are tried at the end of
frame F', and, when necessary, correspond-
ing error-pattern suffixes are tried on the
following frame. All appropriate prefixes of
all different error patterns are tried at all
the appropriate bit locations near the end
of F. At each trial, the CRC checker is
called to check for errors. This is done until
the frame is corrected or all the possibili-
ties are exhausted. Another way for deal-
ing with cross-flag errors is to try different
error patterns in a small region surround-
ing the flag. After each pattern application,
if a flag emerges, it is treated as a can-
didate legitimate flag, and the frame pre-
ceding it is processed. This has the advan-
tage of addressing both flag-saving and flag-
corrupting cross-frame errors in one unified
way, presented next with a focus on flag-
corrupting errors.

In the presence of flag-corrupting cross-
frame errors, the corrupted flag causes the
surrounding frames to merge into a large,
false frame. To avoid missing such a flag,
we exploit the fact that the flag must be in
a small region R near the 2096-th bit af-
ter the previous legitimate flag. Flag re-
covery is then performed in that region as
follows. For each error pattern, the pat-
tern is applied at each bit location in re-
gion R. Whenever a flag emerges, the ten-
tative frame before it is destuffed and CRC
checked, and, if needed, in-frame error cor-
rection is attempted on it. If this succeeds,
then the current flag is taken to be the cor-
rect flag, the frame is considered to be cor-

rected, and the next frame is processed af-
terwards. If it fails, the loop is repeated
with the next bit location, or, when at the
end of the region R, with the next error
pattern started from the beginning of R.
Finally, destuffing errors are handled in-
directly. If a destuffing error does not create
a false flag, then the number of destuffing
error bits cannot be more more 12, because
no V.29 error patterns flips more than 12
bits. Therefore, the destuffer may wrongly
destuff at most 12 bits, or may miss destuff-
ing at most 12 bits. Therefore, under the at-
most-one-error-per-frame assumption, such
destuffing errors are detected by checking
if the length of the destuffed frame differs
from 2096 bits but by no more than 12
bits. In that case, the same in-frame er-
ror correction is done on the pre-destuffed
frame. If, on the other hand, the destuffing
error creates a false flag, it will create two
false frames, each of length smaller than ex-
pected. This is remedied by always looking
for the next flag only after 2096 bits from
the last correct flag, in a relatively small
region R, and then applying the same tech-
nique outlined in the previous paragraph.
This automatically takes care of destuffing
errors, including those that cause false flags.
We have assembled the above methods
into an algorithm for handling all the four
types of errors in a streamlined way, de-
veloped a C code implementation for it,
and evaluated its performance. The pseudo
code of the algorithm is presented next.

Procedure CORRECT-ERROR

Input: a potentially corrupted HDLC bit-
stream;

Output: an error-free bitstream, where all
the HDLC bits are removed

Assumptions: V.29 modulation, with at
most one error per frame. Those assump-
tions are not fundamental.

begin

1. Search for the Next Legitimate Flag:
From the last correct flag, skip 2064
bits, and look for a flag in the region
extending from the 2065-th bit to the
3200-th bit after that flag; this is the
region where the legitimate next flag
lies. Call this region R.

Comment: The next legitimate flag
starts after the 2096-th bit after the
previous flag, but we extend the search
region by 32 bits to the left so that if
we need to correct a corrupted flag in
R, we avoid applying partial error pat-
terns for simplicity.

2. Branching based on the Flag-Search
Qutcome: If a flag is found in the re-
gion R, denote by F' the frame between
the previous flag and the newly found
flag, and go to Step 3. If a flag is not
found in region R, go to Step 6.

3. Destuffing and CRC-Checking: Destuff
the frame F, getting a frame F'. If
F' is of length 2096 bits and the CRC
checker reports no errors on F’, go to
Step 1 to process the next frame.

4. In-frame/Destuffing Error Checking: If
CRC fails on F' (in-frame error) or the
length of F" is different from 2096 bits
but by no more than 12 bits (destuffing
error), then go to Step 5 to perform in-
frame/destuffing error correction.

5. In-Frame/Destuffing Error Correction:
For each error pattern and each bit

position in frame F', apply (i.e., xor)
the error pattern at that error position
in the frame F (not F'), and call the
destuffer and CRC checker. Whenever
success is reported, go to Step 1 (the
frame is treated as now corrected, the
flag is a legitimate flag, and it is time to
process the next frame). If no success
is reached in all the trials of patterns
and bit positions, go to Step 6.

6. Flag-Error Correction: For each error
pattern and each bit position in re-
gion R, apply the error pattern. If a
flag emerges, consider the nondestuffed
frame between the previous legitimate
flag and this flag. Call that frame F'.
Go to Step 5 and apply it on F'.

end

3 Performance Evalua-

tion

We conducted extensive performance eval-
uation of the algorithm for the purposes of:
(1) testing for correction coverage, that is,
error-correction success rate, and (2) mea-
suring the speed of the algorithm and its
C implementation. We conducted the test-
ing on 8 CCITT test files compressed us-
ing JBIG, using a Pentium 400 MHz PC,
and measured the error-correction time. To
get reasonably accurate and comprehensive
measurements of speed, different error rates
were tried, ranging from 5% to 100% of
corrupted frames, maintaining the at-most-
one-error-per-frame assumption. For each
frame-in-error rate, ten test runs were per-
formed; the ten runs differ from one an-
other in the error patterns that are injected,

and in the bit locations of the errors, but
the same frames are infected in all the ten
runs. Note that the speed does not depend
on which frames are infected; rather, it de-
pends only on (1) the number of frames
infected, (2) which error pattern infects a
frame, and, to a much less extent, (3) the
error location in a frame. By trying the er-
ror patterns in the order of decreasing prob-
ability, the correction time is significantly
reduced on average.

The outcome of the tests met our expec-
tations. The algorithm correctness was ver-
ified, and the error-correction success rate
is 100%. The algorithm is able to correct
all errors, whatever the error pattern, er-
ror location, or error class. Similarly with
the speed, the code is quite fast, as shown
in Figures 1 and 2. The amount of time it
takes to correct in-frame/destuffing errors
at an error rate of 5% (only one infected
frame) ranges from less than one second to
less than 3 seconds, while even at the high-
est rate (i.e., all the frames are infected) the
time ranges from 22 seconds to 55 seconds,
averaging at 38 seconds. The situation is
even better for flag-corrupting cross-frame
errors (Figure 2), where at the expected er-
ror rate of 5%, the time ranges from 0.5 sec-
onds to 1.1 seconds (averaging at 0.78 sec-
ond), while at the highest extreme where all
the flags are corrupted, the correction time
ranges from about 7 seconds to 30 seconds
(averaging 19 seconds).

4 Conclusion
In this paper we developed and evaluated an

effective and efficient technique for HDLC
symbol-error recovery without retransmis-

Time For Error Recovery (in second)

w
a
T

w
S
T

N
=]
T

-
13
T

=
o
T

o

- (# of frames in error)
13 6 19 12 115 118 121 124 127 130

=Y

5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Error rate (% of frames that have 1 error)

In-Frame Errors

Figure 1: Speed of In-Frame Error Recovery

sion. This kind of error recovery is very
valuable for several applications, such as
image document facsimile transmission. We
showed that our technique achieves 100%
error recovery rate under any modulation
scheme where the symbol-error patterns are
known a priori as in the case of the V.27 and
V.29 modulation standards.

Future work involves finding error pat-
terns for other more recent modulation
standards, and for developing other error
recovery techniques that do not rely on
HDLC.

REFERENCES:

[ITU T.85] ITU-T Recommendation T.85,
Application Profile for Recommendation
T.82 - Progressive Bi-Level Image Compres-
sion (JBIG Coding Scheme) for Facsimile
Apparatus, August 1995. Amendment 1,

= = = N N N w
) 13) = PN ~ S
T T T T

Time For Error Recovery (in second)

©
T

=2
T

w
T

(# of frames in error)

\3 \6 \9 \12 \15 \18 \21 \24 \27 \30

5% 10% 20% 30% 40% 50% 0% 70% 80% 90% 100%
Error rate (% of frames that have 1 error)

Cross-Frame Errors that Corrupt the End-of-Frame Flags

Figure 2: Speed of Recovery from Cross-
Frame Flag-Corrupting Errors

October 1996. Corrigendum 1, February
1997.

[BLA83] R. E. Blahut, Theory and Practice
of error Control Codes, Addison-Wesley,
1983.

[CCI84] CCITT Recommendation V.27 ter.
4800/2400 Bits per Second Modem Stan-
dardized for use in the General Switched
Telephone Network, amended 1984.

[CCI88] CCITT Recommendation V.29:
9600 Bits per Second Modem Standardized
for use on Point-to-Point 4-Wire Leased
Telephone-Type Circuits, amended 1988.

[RTN96] A. Ratner, ”Device for and
Method of Correcting Errors in Formatted
Modem Transmissions,” Patent 5533033,
1996.

